

International Journal of Advances in Engineering and Management (IJAEM)

Volume 4, Issue 3 Mar 2022, pp: 1264-1266 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-040312641266 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1264

Component model based on COM extension

optimization

Mohammed Layth Talal 1, Bahaa Abdul qader Thabit 2

College of Administration and Economic, University of Diyala, IRAQ
1

Department of Computer Science, Basic Education College, University of Diyala, IRAQ
 2

--

Submitted: 20-03-2022 Revised: 27-03-2022 Accepted: 30-03-2022

ABSTRACT: component approach. The basic

tools used to build programs are today the most

important and main component in various

development teams in both small and large

projects. The basic toolkit is of particular

importance for the latter, since the inertia in such

projects is very high and architectural flaws and

weaknesses of the basic tool can lead to serious

problems in the future. Since the scope of

application is quite wide, the basic toolkit must be

flexible, high speed, require a minimum of

resources of the final operating system, in addition,

extensibility is required for the introduction of new

links [1].

Keyword:COM,object-oriented, GUID,scheme.

INTRODUCTION
When developing applications, most

software developers use component technology,

which is a development of object-oriented design

technology [2]. It combines the flexibility in

component selection inherent in developing an

application in-house with the code reliability and

functional completeness proven by repeated use

typical of commercial software products.

Moreover, component technology allows you to

quickly make changes to an existing application

without violating its performance [1]. At the same

time, new applications can work with new

modules, and old ones with the old ones that

remain in the system. The problem of "legacy"

systems is removed (there is no need to completely

replace them to change or expand functionality,

which means

Component model Microsoft COM

(Component Object Model). In COM, an object is

characterized by its class. A class is an

implementation of some set of interfaces. Multiple

inheritance of interfaces is not supported, instead

an object can have multiple interfaces at the same

time. In COM, an interface can be defined by

inheriting from another interface. All interfaces

have a base interface, IUknown. To navigate from

an interface of a base type to an inherited interface,

or from one of an object's interfaces to another, the

client must call the QueryInterface method defined

in the IUknown [5] base interface.

COM uses a 16-byte GUID to identify

classes and interfaces. An object in COM is an

instance of a class. The client accesses the object

using a pointer to one of its interfaces. The

relationship between a class and the set of

interfaces it supports is rather arbitrary. There is no

predefined relationship between a class identifier

and a particular set of interfaces, and different

instances of a class may support different subsets

of interfaces. The class identifier refers to a

particular implementation, and the actual set of

interfaces for a given implementation is only

finally known at runtime.

Borrowed from C++, the integration

model at the binary level using function tables has

its advantages. The ability to replace object

implementations, invisible to the user, and the high

efficiency of method calls within the same address

space, similar to calling a virtual function in C++,

are positive aspects of this model.

A significant and, perhaps, the only

drawback of COM is the overhead associated with

creating class instances. Creating an instance of a

class in COM involves searching for an

implementation module by the object identifier

GUID in the registry in which the class

implementation is located [4], loading the module

and allocating memory for the class instance. As

you know, registry operations in a Windows

system are relatively long, memory allocation is an

expensive procedure, as is loading a module. The

advantages of the component approach are negated

when building on its basis, for example, various

parsers of structured data formats, such as archives,

mail messages, HTML pages, OLE documents, etc.

Parsing such structured data entails constant

multiple creation of object instances, where

International Journal of Advances in Engineering and Management (IJAEM)

Volume 4, Issue 3 Mar 2022, pp: 1264-1266 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-040312641266 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1265

significant performance loss will occur. Loading a

module is a necessary step when creating an object,

and as for searching the registry and allocating

memory, you can try to do without them.

Optimization and expansion of COM. The

author has developed a component model that

eliminates the listed disadvantages of the COM

model. The main ideas in building the model were:

The ability to create objects in memory

provided from the outside;

· the possibility of explicitly specifying

the implementation module file when creating an

object.

The point of this approach is the ability to provide

memory to an instance of the class, allocated in a

special way, optimal for work in each use case. For

example, you need to quickly create an instance of

an object of a certain class. Stack memory can be

used for this, since memory allocation on the stack

is very fast compared to the allocation of small

blocks of memory by standard operating system

tools. However, stack memory may not be

sufficient in situations where you need to create

many instances of different classes at the same

time, for example, when parsing compound

container objects. In this case, memory can be

allocated in large blocks as needed, and space can

be reserved from each block for each instance

created. It will be much faster

The ability to access the class of an object by

explicitly specifying a module reduces the time it

takes to create an object, since there is no

comparison between the object identifier and its

implementation module.

In the developed model, as in COM, there

are classes, classes have a list of supported

interfaces. Each object interface has a reference

count. All interfaces inherit from IUnknown. One

module may implement one or more classes.

Ensuring the data protection of a class instance

from multi-threaded access is assigned to the

component itself, which makes it possible to

optimally implement protection against parallel

access and not lose unnecessarily the speed of

object execution.

The concepts of static and dynamic class

interfaces were introduced into the component

model. Static interfaces are designed to solve the

problem of implementing functionality that does

not require the creation of class instances. This

saves time because instantiation takes extra time.

Dynamic interfaces, on the other hand, belong to

class instances and solve the same tasks as in

COM.

The ability to explicitly specify

parameters when creating classes was introduced,

among which there must be a pointer to external

memory for solving problems of creating on

external memory. In addition, the method of

obtaining information about a class from an

arbitrary interface, including its unique identifier,

has been standardized. Class and interface

identifiers are the same as in COM, that is, it is a

well-known GUID. This provides the possibility of

identifying the object class, which is required when

passing parameters of pointers to interfaces. For

example, when you need to convert an arbitrary

interface pointer to some specific type of C++

implementation class. Such tasks can also be

solved by implementing a separate interface and

then trying to request it, but this is not very

convenient for programming, and the code is more

cumbersome and confusing. After all, the concept

of interfaces is designed to provide encapsulation

of data and implementation, and in this case it will

be redundant.

Each class has its own IEntryPoint_…

entry point interface, which implements methods

for creating a class instance with arbitrary

parameters and methods for obtaining the required

external memory size. The class creation method

can return a predefined interface to make it easier

to use when programming. You can also receive

static interfaces through the entry point interface.

An analogue of the entry point interface in COM is

the class factory interface, which can also be

obtained through it. Thus, when describing a class,

its own entry point interface is described with its

own creation method with parameters.

The scheme for creating a class instance is

as follows: first, the module is loaded into memory

and a pointer to the DllGetClassObject function is

obtained, similarly to COM; then, through this

function, a pointer to the interface of the entry

point of the desired class or a pointer to the static

interface is obtained, and already through the

interface of the entry point, by calling the method,

an instance of the object is created.

The author has developed and

implemented a component model that makes it

easier and more efficient to use all the advantages

of the component approach in software systems of

any complexity. The technology allows you to

create instances of classes as quickly as possible,

make descriptions of interfaces and their

relationships with classes more understandable, and

simplify the operation of interfaces. The

technology is an extension of Microsoft's COM

model.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 4, Issue 3 Mar 2022, pp: 1264-1266 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-040312641266 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1266

REFERENCES
[1]. Dubenetsky V.A., Sovetov B.Ya.,

Tsekhanovsky V.V. Models of information

technologies of organizational management.

// Sat. elected. work on grants in the region.

informatics and control systems. - Regional

Center for Scientific and Technical.

examinations at SPGETU. - 1996.

[2]. Dubenetsky V.A., Ilyin V.P., Lachinov E.S.,

Tsekhanovsky V.V. Object-oriented

technology for computer-aided design of

distributed information systems. // V intl.

Conf.: "Regional Informatics-96". - St.

Petersburg, 1996.

[3]. Dubenetsky V.A., Ilyin V.P., Tsekhanovsky

V.V. Object-oriented technology for

studying and researching the subject area of

system engineering. // V intl. Conf.:

“Regional Informatics-96”. - St. Petersburg,

1996.

[4]. Dubenetsky V.A., Sovetov B.Ya.,

Tsekhanovsky V.V. Technology of

formalization of the structure of the concepts

of the subject area and their functional

relationships. // Mater. VI intl. Conf.:

"Regional Informatics-98". - St. Petersburg,

1998.

[5]. Dubenetsky V.A., Tsekhanovsky V.V.

Construction of a conceptual model of the

subject area on the example of discrete

manufacturing. // Mater. VII intern. Conf.:

"Regional Informatics-2000". - St.

Petersburg, 2000.

[6]. Dubenetsky V.A., Sovetov B.Ya.,

Tsekhanovsky V.V. Representation of

subject areas in a computer environment. //

VII Intern. Conf.: "Modern learning

technologies". - SPb., 2001.

